488/Math.

UG/4th Sem/MTMH-GE-T-4/20

U.G. 4th Semester Examination - 2020

MATHEMATICS

[GENERIC ELECTIVE]

Course Code: MTMH-GE-T-4

Full Marks: 60

Time : $2\frac{1}{2}$ Hours

The figures in the right-hand margin indicate marks.

The symbols and notations have their usual meanings.

1. Answer any **ten** questions:

 $2 \times 10 = 20$

- a) In Z_6 , which of the following equivalence classes are equal [-1], [2], [8], [5], [-2], [11], [23].
- b) If a be an element of a group and o(a) = 20. Find the order of the element a^8 .
- If a cyclic group G has only one generator. Then prove that either o(G) = 1 or o(G) = 2.
- d) Let G be a group and $a \in G$. Prove that $\langle a \rangle$ is a normal subgroup of G.
- e) Prove that each element in the group $\mathbb{Z}_2 \times \mathbb{Z}_2$ is its own inverse.
- f) Prove that every group of order less than 6 is abelian.

[Turn Over]

- g) If G be a cyclic group of order 1000 find the number of generators of the group.
- h) Prove that the center of a group G is a subgroup of the group G.
- i) Prove that $(\mathbb{Q}, +)$ is non-cyclic.
- j) Find all cyclic subgroups of S_3 .
- k) Let G be a group and H be a subgroup of G. Then prove that for any $h \in H \Rightarrow Hh = H$.
- 1) Show that the ring of matrices $\left\{ \begin{pmatrix} 2a & 0 \\ 0 & 2b \end{pmatrix} : a, b \in Z \right\} \text{ contains divisor of zero.}$
- m) Prove that every Boolean ring is commutative.
- n) Give an example of a finite ring R containing divisors of zero and a subring S of R containing no divisor of zero.
- o) Let $G = \langle a \rangle$ be a group of order n. If m is a positive divisor of n, prove that $O\langle a^m \rangle = \frac{n}{m}$.
- 2. Answer any **four** questions:
 - Suppose that M and N are two normal subgroups of G and such that $M \cap N = \{e\}$. Show that every element of N commutes with every element M.

 $5 \times 4 = 20$

- Prove that a non-commutative group of order 2n, where n is an odd prime, must have a subgroup of order n.
- If H is a normal subgroup of G. Prove that the quotient group G/H is abelian if and only if $xyx^{-1}y^{-1} \in H$ for all $x, y \in G$.
- Let (G, o) be a semigroup and for any two elements $a, b \in G$, each of the equations aox=band yoa = b and has a solution in G. Then show that (G, o) is a group.
- Prove that the characteristic of an integral domain is either zero or a prime number.
- Prove that the set $S = \left\{ \begin{pmatrix} a & b \\ 0 & 0 \end{pmatrix} : a \in \mathbb{R}, b \in \mathbb{R} \right\}$ is a subring of the ring $M_2(\mathbb{R})$. Examine if the subring contains unity and divisor of zero.
- Answer any **two** questions: $10 \times 2 = 20$ 3.

(3)

- i) Let (G₀) be group and H₁ K are two a) subgroups of (G, o). Then show that $H \cup K$ is a subgroup of (G, o) if and only if either $H \subset K$ or $K \subset H$.
 - If (G, o) be a group in which $(aob)^3 = a^3$ ob³ and (aob)⁵ = a^5 ob⁵ for all $a, b \in G$, prove that the group is abelian.

[Turn Over]

- If H be a subgroup of a cyclic group G, b) i) then show that the quotient group G/H is cyclic.
 - A group G has exactly *m* distinct subgroups of prime order p. Prove that the total number of elements of order p in G is m(p-1).
- If D is an integral domain and c) i) $a^m = b^m$, $a^n = b^n$ for all $a, b \in D$, where m, n are positive integers relatively prime, prove that a = b.
 - If a be a fixed element in a ring R and let $C(a) = \{x \in \mathbb{R} : xa = ax\}$. Prove that C(a)is subring of R.

(4)

488/Math.